Functions Preserving Matrix Groups and Iterations for the Matrix Square Root
نویسندگان
چکیده
For which functions f does A ∈ G ⇒ f(A) ∈ G when G is the matrix automorphism group associated with a bilinear or sesquilinear form? For example, if A is symplectic when is f(A) symplectic? We show that group structure is preserved precisely when f(A) = f(A) for bilinear forms and when f(A) = f(A) for sesquilinear forms. Meromorphic functions that satisfy each of these conditions are characterized. Related to structure preservation is the condition f(A) = f(A), and analytic functions and rational functions satisfying this condition are also characterized. These results enable us to characterize all meromorphic functions that map every G into itself as the ratio of a polynomial and its “reversal”, up to a monomial factor and conjugation. The principal square root is an important example of a function that preserves every automorphism group G. By exploiting the matrix sign function, a new family of coupled iterations for the matrix square root is derived. Some of these iterations preserve every G; all of them are shown, via a novel Fréchet derivative-based analysis, to be numerically stable. A rewritten form of Newton’s method for the square root of A ∈ G is also derived. Unlike the original method, this new form has good numerical stability properties, and we argue that it is the iterative method of choice for computing A1/2 when A ∈ G. Our tools include a formula for the sign of a certain block 2× 2 matrix, the generalized polar decomposition along with a wide class of iterations for computing it, and a connection between the generalized polar decomposition of I + A and the square root of A ∈ G.
منابع مشابه
A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT
The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملOn the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملLinear Functions Preserving Sut-Majorization on RN
Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if t...
متن کاملNewton's Method for the Matrix Square Root*
One approach to computing a square root of a matrix A is to apply Newton's method to the quadratic matrix equation F( X) = X2 A =0. Two widely-quoted matrix square root iterations obtained by rewriting this Newton iteration are shown to have excellent mathematical convergence properties. However, by means of a perturbation analysis and supportive numerical examples, it is shown that these simpl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 26 شماره
صفحات -
تاریخ انتشار 2005